Simulation of the overbraiding process using complex shaped mandrels

Flecht-Kolloquium 2014, Friday November 7, 2014
Johan van Ravenhorst and Remko Akkerman
Faculty of Engineering Technology, Chair of Production Technology
Contents

- Introduction
- Problem
- Analysis - neglecting yarn interaction
- Experiment
- Analysis - including yarn interaction
- Conclusions & Recommendations
Introduction - braiding

Braiding examples
Introduction

Circular braiding

Courtesy Eurocarbon, The Netherlands
Introduction

Spool movement

stem yarns

horn gear

warp (x) weft (O)

Courtesy Eurocarbon, The Netherlands
Introduction

Process chain

- used for production of braided composite preforms,
- preforms are used for e.g. RTM (Resin Transfer Moulding) process,
- fiber material: dry or commingled thermoplastic
Introduction

Simulation of the overbraiding process using complex shaped mandrels

'Classical solution':

\[\alpha = \arctan\left(\frac{\omega r_m}{v}\right) \]
Problem

Given:
- mandrel geometry,
- laminate plan with required α,
- machine with constant carrier speed ω:

How to automatically generate the take-up speed profile for an arbitrary mandrel?

$\alpha_{req} \rightarrow$ optimization $\rightarrow v$

...by inverse kinematics
Analysis - neglecting yarn interaction

Assumptions:
- no yarn interaction
- no friction at guide rings
- no slip after deposition
Simulation of the overbraiding process using complex shaped mandrels

From geometry,

\[v = \omega \frac{\Delta z}{\Delta \varphi} \]
Experiment

Mismatch:
- model VS experiment
- Braid angle: 15° error
Analysis - including yarn interaction

Presumed main cause:
- “Neglect of yarn interaction”
Analysis - including yarn interaction

Assumptions:
- biaxial braid
- axisymmetry
- steady state

...by inverse kinematics
Analysis - including yarn interaction

Simulation of the overbraiding process using complex shaped mandrels
Analysis - including yarn interaction
Analysis result - including yarn interaction

- **no** interaction: straight yarns
- with interaction: curved yarns

130mm slack

220mm slack

goal: 100% coverage
Conclusions

- Significant braid angle error when neglecting yarn interaction.
- Including yarn interaction leads to a significant change in:
 - take-up speed profile,
 - predicted amount of yarn slack.
- Appropriate machine control required
Recommendations

- Validate axisymmetric yarn interaction model by experiment.
- Design and implement a yarn interaction model for forward solution (input: speeds, output: braid angle) for arbitrary shapes.
 - Coulomb / Howell friction
- Validate for arbitrary shapes.
Acknowledgements

EUROCARBON
advanced fibre braiding and weaving technology

UNIVERSITY OF TWENTE.
Simulation of the overbraiding process using complex shaped mandrels

20141107 19